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Cardioprotective effects of sglt2 inhibitors through their 
direct actions on cardiomyocytes
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Heart failure (HF) is one of the leading causes of death and disability worldwide and it exerts a huge economic burden on 
the healthcare system. The sodium glucose co-transporter 2 (SGLT2) is one of the major glucose co-transporters involved in 
glucose reabsorption in the kidney that helps control body glucose levels. Inhibitors of SGLT2 were originally developed to 
lower blood glucose for the treatment of type-2 diabetes (T2D), but recently they have been associated with positive outcomes 
in a variety of HF patient cohorts regardless of diabetic status. The salutatory effects of SGLT2 inhibitors on cardiac function 
have been attributed to a shift in metabolic flow, reduced blood pressure and plasma volume through natriuretic, anti-fibrotic, 
and anti-inflammatory effects. More recently SGLT2 inhibitors have been linked to direct effects on cardiomyocytes. However, 
the exact mechanisms through which SGLT2 inhibitors modulate cardiomyocyte function remains elusive due to the lack of 
consensus on the expression of SGLT2 in the heart, and their complex impact on different organs. In this review, we focus 
on studies that have evaluated the direct effects of SGLT2 inhibitors on cardiomyocytes and discuss how these actions could 
achieve cardioprotection. A better understanding of the cardiomyocyte-specific benefits of SGLT2 inhibitors could help to 
optimize their usage in clinical practice and improve the prognosis of patients with HF.
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Introduction 
Heart failure (HF) is one of the leading causes of death and 
disability worldwide affecting 6.2 million individuals in the 
United States and 37.7 million individuals worldwide according 
to recent epidemiological reports (Ziaeian and Fonarow 2016; 
Virani et al., 2020). HF is the most common complication 
of cardiovascular diseases, and is classified into HF with 
preserved ejection fraction (HFpEF, when EF > 50%) and HF 
with reduced EF (HFrEF, when EF < 50%) (Ponokowski et al., 
2016; Yancy et al., 2017). Regardless of HF classification, it 

happens when the heart fails to pump enough blood to meet the 
requirements of the body, leading to poor quality of life affected 
negatively by, for example, shortness of breath, exercise 
intolerance, and swelling in the lower limbs. The healthcare 
cost for HF is high mainly due to frequent hospitalizations and 
chronic treatments (Heidenreich et al., 2022), and is estimated 
to increase from 31 billion USD in 2012 to 70 billion USD by 
2030 in America alone (Heidenreich et al., 2013). Thus, there 
is an unmet need to identify novel treatment approaches to 
improve clinical outcomes in HF.

Highlights
A key pathophysiological feature of heart failure is aberrant levels of body glucose. Here, the authors implicate the important role 
of the sodium glucose co-transporter 2 (SGLT2), which stands as a major glucose cotransporter regulating body glucose levels. 
Although it has been shown that inhibitors of SGLT2 lower blood glucose for the treatment of type 2 diabetes, their use in heart 
failure has recently gained attention. The authors review the literature in support of SGLT2 inhibitors in modulating cardiomyocytes 
with emphasis on cardioprotective strategies. In line with Conditioning Medicine’s overarching goal of advancing cardioprotection, 
this article probes the mechanistic interaction between SGLT2 inhibitors and cardiomyocyte function that could help in the 
diagnosis and treatment of heart failure.
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     The sodium glucose co-transporter 2 (SGLT2) belongs to 
a sodium/glucose co-transporter gene family (SLC5A), which 
express a group of sodium-coupled transporters for several 
different nutrients (Ostrowska et al., 2015; Wright et al., 2017). 
Among them, four isoforms transport glucose (SGLT1, 2, 4, 
and 5) (Hediger et al., 1989; Wells et al., 1992). SGLT2 is 
the predominant SGLT isoform expressed in renal proximal 
convoluted tubule epithelial cells (RPCTs) and is responsible 
for the majority of glucose reabsorption in concert with glucose 
transporter 2 (GLUT2) (Vallon et al., 2011). As improving 
glycemic control has been the major aim for treating type-
2 diabetes (T2D), SGLT2 inhibitors were originally used to 
lower blood glucose levels for the treatment of T2D (Heise et 
al., 2013; Seman et al., 2013). Given its cardiovascular benefits 
reported in clinical trials for T2D (Häring et al., 2013; Kovacs 
et al., 2014; Chilton et al., 2015), which include reducing 
arterial stiffness and lowering systemic blood pressure, SGLT2 
inhibitors were later proposed as potential therapeutic agents 
for patients with HF. Among them, empagliflozin has been 
associated with the most positive outcomes in a number of 
patient cohorts regardless of diabetic status, including T2D 
patients with high CV risk (EMPA-REG Outcome) (Zinman 
et al., 2015), HFrEF (EMPEROR-Reduced) (Packer et al., 
2020), and HFpEF (EMPEROR-Preserved) (Anker et al., 
2021), by primarily reducing the risk of HF hospitalization. 
Apart from empagliflozin, dapagliflozin is another SGLT2 
inhibitor recently reported to reduce HF hospitalizations and 
cardiovascular death in patient cohorts with HFrEF (DAPA-
HF) (Jhund et al., 2021) and HFpEF (DELIVER) (Solomon et 
al., 2022). Other SGLT2 inhibitors that have shown efficacy 
in improving cardiovascular function in patients with T2D 
include canagliflozin, sotagliflozin, and ertugliflozin (Neal et 
al., 2017; Cannon et al., 2020; Cong et al., 2020; Bhatt et al., 
2021). Taken together, there is substantial evidence that SGLT2 
inhibition is cardioprotective and these benefits are independent 
of their glucose-lowering effects. 
     In this review article, we discuss potential mechanisms 
through which SGLT2 inhibitors achieve cardioprotective 
funct ion,  with emphasis  on their  direct  benefi ts  on 
cardiomyocytes.  We also discuss the challenges and 
controversies investigating cardiomyocyte-specific effects 
of SGLT2 inhibitors. Better understanding of the actions of 
SGLT2 inhibitors in improving cardiac function could help to 
optimize their usage in clinical practice, improve the prognosis 
of patients with HF, and further our understanding of the 
underlying mechanisms that drive HF.

Mechanisms of Cardioprotection – Do Cardiomyocytes 
Matter?
Systemic vs. cardiac benefits of SGLT2 inhibitors
It is critical to identify the targets of SGLT inhibitors to 
understand the mechanisms through which cardiac function is 
improved. One of the key pathophysiological conditions of HF 
is sustained activation of compensatory pathways such as the 
sympathetic neural system (SNS) and the renin-angiotensin-
aldosterone (RAAS) system, accompanied by elevated 
inflammation and oxidative stress, leading to maladaptative 
remodeling of the myocardium (Eisen 2017; Fathi et al., 2021). 
Previous HF therapeutics, such as beta blockers (Groenning et 
al., 2000) or blood pressure (BP) lowering agents (Greenberg 
et al., 1995; Cicoira et al., 2002), were developed to reverse 
these compensatory pathways to ameliorate the severity of the 
disease state. A similar notion was applied to SGLT2 inhibitors 
as SGLT2 inhibition in the renal system could shift metabolic 
flow through glucosuria and reduce BP and plasma volume 
through natriuresis (Heerspink et al., 2016; Cowie and Fisher 
2020) that could either improve fuel-usage or reduce preload of 
the heart to alleviate cardiac stress. Apart from direct inhibition 

of SGLT2 in the kidney, empagliflozin could also stimulate anti-
inflammatory signaling pathways in the immune system that 
could be beneficial to cardiac function, including augmented 
M2 marker expression in macrophages, suppressed inducible 
nitric oxide synthase, interleukin (IL)-6, and IL-10 levels in 
the blood (Andreadou et al., 2017; Lee et al., 2017; Koyani et 
al., 2020). However, while the majority of studies focused on 
indirect cardiac benefits as in other current HF therapeutics, 
emerging reports also showed SGLT2 inhibitors could act on 
the heart to improve its function by targeting cardiac fibroblasts, 
endothelial cells, and cardiomyocytes. As cardiomyocytes 
are the predominant cell type that governs mechanical and 
bioenergetic properties of the heart, we will focus on the direct 
beneficial effects of SGLT2 inhibitors on cardiomyocytes in this 
review.

Cardiomyocyte-specific effects of empagliflozin
A key area of controversy when investigating direct actions 
of SGLT2 inhibitors on cardiomyocytes is that there is lack of 
consensus on whether SGLT2 is expressed in cardiomyocytes. 
Although the majority of earlier reports have suggested that 
SGLT2 is absent in the heart (Chen et al., 2010; Vrhovac et al., 
2015), emerging evidence has shown SGLT-2 expression in 
cardiomyocytes, particularly in aging or diseased conditions. 
In 2017, Hammoudi el al. (2017) reported increased SGLT2 
expression in the heart tissue of a genetic model of T2D 
mice (ob/ob), which trended downwards with empagliflozin 
treatment. This result was supported by a later study showing 
that high glucose (HG)-treated human induced pluripotent 
stem cells (hiPSCs) induced a dramatic increase in SGLT2 
expression, which was reversed by empagliflozin (Ng et al., 
2018). Later, Olgar el al. (2020) demonstrated the appearance 
of SGLT2 expression at the protein level in cardiomyocytes 
isolated from 24-month-old Wistar male rats. Similar results 
have been found in the heart tissue of murine models of 
myocardial infarction (Lee et al., 2021; Li et al., 2021). 
Nonetheless, a recent study reported that the protective effect 
of empagliflozin on myocardial infarction remained intact 
in whole-body SGLT2 KO mouse, suggesting a mechanism 
independent of SGLT2 inhibition (Chen et al., 2023). As 
SGLT2 does not appear to be the predominant SGLT isoform 
nor the major sodium/glucose transporters in cardiomyocytes, 
pre-clinical studies have focused on off-target effects of 
empagliflozin. These identified cardiomyocyte-specific effects 
of SGLT2 inhibitors include inhibition of sodium proton 
exchanger 1 (NHE1) (Baartscheer et al., 2017), activation of 
AMP-activated protein kinase (AMPK) (Lu et al., 2020; Kondo 
et al., 2021), inhibition of the late Na+ current (Philippaert et al., 
2021), and inhibition of Ca2+/calmodulin-dependent kinase II 
(CaMKII) (Mustroph et al., 2018). As improved cardiomyocyte 
function in an in vivo animal model could result from systemic 
benefits instead of cardiomyocyte-specific actions, we will focus 
on in vitro effects of SGLT2 inhibitors on cardiomyocytes. 
We will mainly discuss results from isolated adult or neonatal 
cardiomyocytes from rats or mice, and cardiomyocytes 
differentiated from hiPSCs. We will also include results using 
H9c2 or HL-1 cells, as a significant portion of the studies in 
this field are still at the stage of using immortalized cell lines 
for cardiac phenotyping. Information provided from this review 
will help to clarify the exact actions of SGLT2 inhibitors at 
the cardiomyocyte level and how these could be linked to 
cardioprotection.

NHE1 Activities and Sodium Homeostasis
NHE1 is the predominant isoform of NHE and major regulator 
of Na+ influx in cardiomyocytes, and its activity has been 
shown to increase in HF (Karmazyn 1988; Yokoyama et 
al., 2000; Engelhardt et al., 2002). Elevated NHE1 activity 
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increases cytosolic [Na+] and [Ca2+], leading to cardiomyocyte 
injury and cardiac hypertrophy (Nakamura et al., 2008; Despa 
and Bers 2013). Clinical trials using specific NHE1 inhibitors 
to treat acute myocardial infarction, however, have mostly been 
unsuccessful because of serious side effects such as increased 
incidence of cerebrovascular events leading to strokes, despite 
their cardioprotective effects (Mentzer Jr et al., 2008; Karmazyn 
2013). The role of NHE1 as a potential mediator of the effects 
of SGLT2 inhibitors in cardiomyocytes was first described by 
Baartscheer et al. (2017) who demonstrated that empagliflozin 
directly inhibited NHE1 in rat and rabbit cardiomyocytes. 
The same group reported that while empagliflozin treatment 
reduced cytosolic [Na+], and both diastolic and systolic [Ca2+], 
mitochondria [Ca2+] was increased (Baartscheer et al., 2017). 
This is likely due to the secondary effect of reduced cytosolic 
[Na+], leading to Na+ efflux from mitochondria through the 
mitochondrial sodium calcium exchanger (NCLX) in exchange 
for Ca2+ influx (Pogwizd et al., 2003; Liu and O'Rourke 2008). 
In terms of the inhibitory mechanism on NHE1, the same 
group showcased that empagliflozin inhibited NHE1 likely 
through binding to its Na+ binding site (Uthman et al., 2018). 
This finding from Baartscheer et al (2017) was later supported 
by a follow-up study from another group (Trum et al., 2020). 
Since then, several studies have shown empagliflozin attenuated 
cytosolic Na+ overload, improved mitochondrial function, 
and reduced reactive oxygen species (ROS) production in 
adult mouse cardiomyocytes from different disease models 
(Lee et al., 2019; Uthman et al., 2019; Peng et al., 2022). In 
a recent study, Jiang et al. (2022) showed that empagliflozin 
treatment could reduce cytosolic [Na+] and [Ca2+] and protected 
neonatal mouse cardiomyocytes and H9c2 cells from glucose 

deprivation-induced autosis. These effects could be mimicked 
by NHE1 knockout and nullified by NHE1 overexpression (Jiang 
et al., 2022). In immortalized cell lines, NHE1 expression was 
restored when dapagliflozin or empagliflozin protected H9c2 
cells from high glucose-triggered apoptosis or angiotensin II-
induced cellular hypertrophy, respectively. (Shih et al., 2021; 
Abdulrahman et al., 2022). 
     Despite plenty of promising evidence that SGLT2 inhibitors 
are cardioprotective through NHE1 inhibition, this mechanism 
has been questioned by some publications (Chung et al., 
2021; Li et al., 2021; Baker et al., 2022). Also, the underlying 
mechanism by which NHE1 inhibition with SGLT2 inhibitors 
provides cardioprotective effects is still not well understood. 
The major hypothesis as to how NHE1 inhibition is beneficial 
to HF is through reduction in cytosolic [Na+], which has the 
secondary consequence of lowering cytosolic [Ca2+], resulting 
in multiple favorable effects for HF, as previously reviewed 
in detail elsewhere (Chen et al., 2022). One possible outcome 
of these effects is increased mitochondrial [Ca2+]. Although 
mitochondrial Ca2+ overload is known to be detrimental, basal 
mitochondrial Ca2+ is required for normal function of the 
tricarboxylic acid cycle and antioxidant network (Cortassa et 
al., 2003; Liu and O'Rourke 2008; Kohlhaas et al., 2010; Liu et 
al., 2014; Kohlhaas et al., 2017). Apart from NHE1 inhibition, 
several recent studies have demonstrated that the late sodium 
current (INa,late), which is the sustained component of Na+ 
current during the plateau of the action potential that controls 
Na+ entry homeostasis of the cardiomyocytes, was suppressed 
by empagliflozin treatment (Philippaert et al., 2021; Hegyi 
et al., 2022; Mustroph et al., 2022). Since INa,late is known to 
be elevated in different types of HF (Horvath and Bers 2014; 

Table 1. Studies reporting the involvement of sodium and calcium homeostasis in the cytoprotective effects of SGLT2 inhibitors. 
EMPA: empagliflozin; DAPA: dapagliflozin; CANA: canagliflozin; GD: glucose deprivation.
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Makielski 2016) as seen in NHE1 activity, SGLT2 inhibitors 
likely play a broader regulatory role apart from NHE1 inhibition 
for the rebalancing of cytosolic Na+ in response to HF. 
Interestingly, a recent study demonstrated that in vitro treatment 
with empagliflozin could directly increase ATP levels in mouse 
cardiomyocytes partly through NHE1 inhibition and INa,late 
inhibition (Choi et al., 2023), suggesting a direct link between 
sodium homoeostasis and mitochondrial function. Furthermore, 
the role of SGLT2 inhibitors in down-regulating INa,late likely 
explain why they were also recently demonstrated to have 
beneficial clinical outcomes in patients with arrhythmias (Li et 
al., 2021).

CaMKII Activities and Calcium Handling
Calcium/calmodulin-dependent kinase II (CaMKII) is a serine/
threonine-based phosphokinase that is found in almost every 
organ (Braun and Schulman 1995), with its δ form being the 
predominant cardiac isoform (Schworer et al., 1993; Mayer 
et al., 1995). CaMKII is activated when there is increased 
intracellular [Ca2+], and when activated in cardiomyocytes, 
it phosphorylates key regulators of Ca2+ homeostasis and 
excitation-contraction coupling (ECC) including ryanodine 
receptor (RyR), phospholamban, and L-type Ca2+ channel (Yuan 
and Bers 1994; Lokuta et al., 1995; Karczewski et al., 1997; 
Dzhura et al., 2000). In the cardiomyocytes of the failing hearts, 
there is up-regulation of CaMKII activity, leading to defective 
ECC, enhanced diastolic sarcoplasmic reticulum (SR) Ca2+ 
leak, and reduced SR Ca2+ sequestration, resulting in impaired 
contraction and relaxation (Hoch et al., 1999; Kirchhefer et al., 
1999). With regard to the interaction with SGTL2 inhibitors, 
Mustroph et al. (2018) demonstrated that 24 hour exposure 
to empagliflozin (1 µM) reduced CaMKII activity in adult 
cardiomyocytes isolated from HF patients and mice subjected 
to transverse aortic constriction. Consistent with CaMKII 
activity, they also found decreased CaMKII-dependent RyR 
phosphorylation and reduced spontaneous diastolic Ca2+ leaks 
from the SR, and most importantly, increased SR Ca2+ transient 
in these cardiomyocytes, suggesting that increased contractile 
function at the level of the cardiomyocytes might account 
for the beneficial effects of empagliflozin in HF. The ability 
of SGLT2 inhibitors to regulate Ca2+ homeostasis was also 
observed when empagliflozin was shown to reduce elevated 
Ca2+ transient and improve [Ca2+] re-uptake in hiPSCs derived 
cardiomyocytes with HG administration (Ng et al., 2018). Later, 
Olgar et al. (2020) showed that treatment with dapagliflozin 
abated elevated intracellular [Ca2+] and Ca2+ leak from SR in 
cardiomyocytes from aging mice (Olgar et al., 2020). These 
results, however, were challenged by a report that observed no 
changes in either CaMKII activity or and Ca2+ transient after 
hiPSC cardiomyocytes were subjected to long-term (2 and 8 
weeks) administration of empagliflozin (0.5 µM) (Pabel et al., 
2020). One possible explanation is that healthy cardiomyocytes 
do not have impaired Ca2+ handling or CaMKII, so the effect 
of SGLT2 inhibitors was minimized. Interestingly, in a recent 
report, Mustroph et al. (2022) demonstrated that reduced 
INa,late observed in adult mouse cardiomyocytes treated with 
empagliflozin was dependent on CaMKII inhibition. Thus, there 
is the likelihood of crosstalk between Ca2+ and Na+ homeostasis 
in response to SGLT2 inhibitors at the level of cardiomyocytes, 
and their potential mechanisms still need to be determined. 
Current knowledge regarding the role of SGLT2 inhibitors to 
control Ca2+ and Na+ homeostasis is summarized in Table 1. 

AMPK – Nutritional Homeostasis and Autophagy
Another well-reported target of SGLT2 inhibitors at the 
cardiomyocyte level is AMPK and its associated autophagy/
mitophagy pathways. AMPK is a master regulator of energy 
homeostasis, which maintains proper cellular function in 

response to energetic stress (Heidrich et al., 2010; Steinberg and 
Carling 2019). One of the key allosteric activators of AMPK is 
elevated the ADP/ATP ratio during energy deprivation, leading 
to the shift from anaerobic to catabolic pathways in favor of 
energy production (Davies et al., 1995; Hardie et al., 1999), 
thus AMPK acts as both a nutrient sensor and responder. In HF, 
there is a surplus of nutrients such as glucose or long chain fatty 
acids in the cytosol owing to impaired mitochondrial function 
that reduces oxidative metabolism (Sharma et al., 2004), leading 
to the suppression of AMPK (Wang et al., 2018). 
    Restoring the activity of AMPK and the energy production 
machinery has been one of the major benefits of SGLT2 
inhibitors in earlier publications, as deduced mostly from in 
vivo studies (Inoue et al., 2019; Sayour et al., 2019; Lu et al., 
2020). However, these studies could not rule out the likelihood 
that AMPK is activated through systemic mechanisms such 
as reduced blood glucose levels, which is a well-known 
consequence of SGLT inhibitor administration. Interestingly, 
short-term treatment of empagliflozin did not appear to have 
effects on AMPK signaling of isolated diabetic mouse hearts 
(Zhang et al., 2020). It was not until 2020 that a series of 
publications demonstrated that treatment with SGLT2 inhibitors 
in vitro directly activated AMPK and its mitoprotective actions 
for energy production in adult mouse cardiomyocytes (Lu 
et al., 2020; Sun et al., 2020) and HL-1 cells (Koyani et al., 
2020) in response to ischemia-reperfusion injury, LPS-induced 
inflammation, or in vivo high fat diet treatment. The activation 
of AMPK pathway with SGTL2 inhibitor also relieved the 
adverse effects of oxidative stress at the level of cardiomyocytes 
by restoring PGC-1α (Tsai et al., 2021) or down-regulating 
NADPH oxidase through Rac1 signaling (Kondo et al., 2021). 
The study by Kondo el al. (2021) also demonstrated that 
canagliflozin blunted glucose uptake by inhibiting SGLT1, 
leading to elevated AMP/ATP ratio, which activated AMPK. 
This proposed mechanism for how canagliflozin (IC50 = 694-
910nM to SGLT1) activates AMPK, however, does not really fit 
other SGLT2 inhibitors such as empagliflozin as the later has a 
much lower affinity to SGLT1 (IC50 = 8.3µM) and its inhibitory 
effect on SGLT1 is negligible (Cong et al., 2022).  With 
regard to regulation of nutrition uptake, GLUT1 expression 
in adult mouse cardiomyocyte was shown to be increased 
with empagliflozin treatment, resulting in increased glucose 
influx (Mustroph et al., 2019), but the finding has not been 
confirmed by others. In the latest studies, it was found that the 
activation of AMPK and its anti-oxidative action also alleviated 
ferroptosis, an iron-dependent programmed cell death resulting 
from accumulation of lipid peroxides (Min et al., 2023; Zhang 
et al., 2023).
     Apart from the regulatory role in nutritional homeostasis, 
AMPK also mediates downstream signaling pathways that are 
involved in the cellular housekeeping process of autophagy, 
such as activating sirtuin (SIRT) 1, SIRT3, or mammalian target 
of rapamycin (mTOR) suppression to ensure the quality of the 
cellular machinery when stress appears (Packer 2023), including 
mitophagy and mitobiogenesis (Wu and Zou 2020). In neonatal 
mouse cardiomyocytes, it was found that empagliflozin relieved 
doxorubicin-perturbed autophagic flux through a Beclin1-Toll-
like receptor 9-SIRT3 pathway, which was nullified with SIRT3 
siRNA (Wang et al., 2020). Also, ischemia/reperfusion injury-
triggered NLRP3 inflammasome activation was limited by 
dapagliflozin through autophagy activation (Yu et al., 2022). 
In immortalized cell lines, treatment with SGLT2 inhibitors 
activated AMPK phosphorylation and blocked the mTOR/
hypoxia inducible factor-1 pathway to activate autophagy in 
H9c2 and HL-1 cells treated with sunitinib or palmitic acid 
(PA), respectively (Ren et al., 2021; Sun et al., 2021). Apart 
from SIRT3, SIRT1 was also shown to play regulatory roles 
in the beneficial effects of SGLT2 inhibitors on cells treated 
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with hypertrophic stimulation or insult from ethanol (Tian 
et al., 2021; Ren et al., 2022). Interestingly, in a recent study 
investigating the effects of mitophagy on the efficiency of 
empagliflozin on mice subjected to myocardial infarction, 
Parkin was required for empagliflozin-induced mitochondria-
related energetics, but not for empagliflozin’s protective effects 
against adverse cardiac remodeling, suggesting the existence 
of additional mechanisms (Song et al., 2021). Current studies 
reporting the function of SGLT2 inhibitors in mediating 
energy homeostasis and autophagic flux in cardiomyocytes are 
summarized in Table 2.

Antioxidative/Mitoprotective Effects
Another driving factor of the pathophysiology of cardiac 
remodeling and HF is elevated oxidative stress, which 

happens when there is excess production of ROS compared 
with the antioxidant capability of the cells. The major 
intracellular sources of ROS in the cells include mitochondria, 
NADPH oxidase, xanthine oxidase, and uncoupled nitric 
oxide synthase (Tsutsui et al., 2011). Thus, the maintenance 
of mitochondrial function and its crosstalk with other 
compartments play a pivotal role in preventing a chronic 
increase of ROS, which is detrimental to the organelles of 
the cells, including mitochondria, SR, and the contractile 
machinery of cardiomyocytes. As SGLT2 inhibitors were 
shown to have mitoprotective effects potentially attributed to 
their role in promoting mitobiogenesis and mitophagy through 
AMPK pathways, it was not surprising that they could serve 
as antioxidative agents. In neonatal rat cardiomyocytes, Arow 
et al. (2020) demonstrated that elevated intracellular ROS 

Table 2. Studies reporting the involvement of increased energy production through activating AMPK and increased autophagic flux 
in the cytoprotective effects of SGLT2 inhibitors. GLUT1: glucose transporter 1; HFD: high fat diet; PTEN: phosphatase and tensin homolog; 
ER: endoplasmic reticulum.
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induced by HG treatment + angiotensin II could be alleviated 
with dapagliflozin treatment. ROS and improved mitochondria 
function were also seen in immortalized HL-1 and H9c2 cells 
treated with either HG or PA (Andreadou et al., 2017; Chang et 
al., 2021; Liu et al., 2021; Shih et al., 2021; Xing et al., 2021; 
Bugga et al., 2022). Current studies that have evaluated the 
antioxidative and mitoprotective effects of SGLT2 inhibitors are 
summarized in Table 3.

Post-Translational Modifications on Myofilaments
Myofilaments are the basic contractile unit that occupy the 
largest portion of cardiomyocytes (Gerdes 2012). Contraction 
and relaxation of myofilaments are mediated by alternating 
sliding actions between the thin and thick filaments toward 
or away from the M-band (Huxley 1957), while the structural 
support of myofilament is mainly provided by titin. The 
stiffness of titin is regulated by its isoform composition 
(Neagoe et al., 2002; Wu et al., 2002) or post-translational 
modifications (Anderson and Granzier 2013; Loescher et al., 
2022). In a rat model of HFpEF where the myocardium had 
relaxation impairment, protein kinase G (PKG) was shown 
to be phosphorylated by titin at the N2Bus element, resulting 
in reduced stiffness of the skinned cardiomyocytes (Hamdani 
et al., 2013; Kovacs et al., 2016), which could be beneficial 
to myocardial relaxation. In recent years, it was reported that 
acute treatment of empagliflozin alleviated titin stiffening by 
reducing oxidative stress, leading to increased bioavailability 
of nitric oxide, which activated the soluble guanylyl cyclase/
cyclic guanosiine monophosphate/PKG pathway in skinned 
human and rat HFpEF myocardium (Pabel et al., 2018; Kolijn 
et al., 2021), suggesting SGLT2 inhibitors target diseased 
myofilaments and improve their compliance. However, 
whether nitric oxide is increased via the direct effects of 
empagliflozin on cardiomyocytes is unclear. Furthermore, as 

energy deprivation could impair both contractile and relaxation 
mechanics of isolated single myofibrils (Tesi et al., 1999; Tesi 
et al., 2002), it is possible that the energy restoring effects 
of SGLT2 inhibitors on diseased cardiomyocytes facilitated 
contraction and relaxation of the myofilament. 

Conclusions and Future Perspectives
The emergence of SGLT2 inhibitors, empagliflozin in 
particular, sheds new light on therapeutics in the treatment of 
HF for several reasons: (1) SGLT2 inhibitors appear to have 
beneficial effects in a broad range of cardiovascular diseases 
supported by plenty of clinical trials, including HF (regardless 
of ejection fraction) (Packer et al., 2020; Anker et al., 2021), 
acute decompensation of chronic HF (Kambara et al., 2019; 
Bhatt et al., 2021), HF after acute myocardial infarction (Tripolt 
et al., 2020), hypertension (Kario et al., 2018; Papadopoulou 
et al., 2021), and arrhythmias (Li et al., 2021). (2) SGLT2 
inhibitors (empagliflozin and dapagliflozin) were the first 
therapeutics to demonstrate beneficial effects across a broad 
range of patients suffering from HFpEF, which is poised to be 
the predominant cause of HF in the near future. (Oktay et al., 
2013; Ambrosy et al., 2014) Therapeutic approaches for HF 
were limited prior to the advent of SGLT2 inhibitors due to its 
complex pathophysiology and diverse clinical phenotypes (Shah 
et al., 2016; Lam et al., 2018; Yap et al., 2022). As HFpEF is a 
multi-systemic disorder triggered by a wide spectrum of clinical 
risk factors and comorbidities (Lam et al., 2018; Mishra and 
Kass 2021; Withaar et al., 2021; Yap et al., 2022), the multi-
systemic regulatory roles in their cardioprotective effects are 
likely the reason why SGLT2 inhibitors have shown promise for 
the treatment of HFpEF. Interestingly, despite all the positive 
outcomes, the exact reasons why SGLT2 inhibitors are superior 
to other HF drugs, especially at the level of cardiomyocytes, are 
still elusive and require further investigation.

Table 3. Studies reporting the involvement of antioxidative and mitoprotective effects mediates in the cytoprotective effects of 
SGLT2 inhibitors. HG: high glucose.
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     SGLT2 inhibitors have been reported in in vitro studies 
to have direct effects on cardiomyocytes but whether this is 
achieved via SGLT2 or off-targets effects remains unclear. 
There is the likelihood that these different effects interact with 
each other. As summarized in Fig. 1, NHE1 inhibition leads 
to reduced intracellular [Na+], which leads to (1) reduced 
intracellular [Ca2+] that might contribute to blunted CaMKII 
activities with SGLT2 inhibitor treatment (Mustroph et al., 
2018) and (2) restored mitochondrial [Ca2+] required for 
normal function of the tricarboxylic acid cycle and antioxidant 
network to improve mitochondrial function. As mitochondria 
are the major antioxidant system in the cells, NHE1 inhibition 
could reduce oxidative stress, further improving mitochondria 
function. (3) Reduced oxidative stress could enhance nitric 
oxide bioavailability of the cell and PKG, which leads to 
titin phosphorylation at its N2Bus element, and reduced titin 
stiffness and improved myocardial relaxation. This NHE-1-
mitoprotection-antioxidation linkage has not been addressed 
in the literature. Despite extensive reports demonstrating 
cardioprotection with SGLT2, to date, the underlying pathways 
through which SGLT2 inhibitors mediate their beneficial 
effects in HF have not yet been addressed, apart from targeting 
SNS and RAAS to indirectly ameliorate heart function (Brann 
et al., 2019; Pellicori et al., 2020). One important point to 
note regarding the cardiomyocyte-specific effects of SGLT2 
inhibitors is that a variety of dosages have been used in 
these studies (as seen in Table 1-3), and it is important to use 
clinically relevant dosages when undertaking in vitro studies 
(e.g. 1 µM or lower (Brand et al., 2012; Laffel et al., 2018)) 
to reduce the risk of off-target effects. Furthermore, despite 
an abundance of studies working on the potential mechanisms 
through which SGLT2 inhibitors directly activate AMPK and 
enhance autophagic flux, a number of these in vitro studies were 
performed in immortalized cell lines, and therefore need to be 
verified using isolated cardiomyocyte or cardiomyocyte derived 
from hiPSCs. Knowledge obtained from these studies could 
help in the identification of more specific targets to optimize 

therapeutic strategies to efficiently treat HF using SGLT2 
inhibitors.
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